Produkte

SurveyMonkey eignet sich für alle Zwecke und Bedürfnisse. Testen Sie unser Produkt, um zu sehen, wie SurveyMonkey für Sie funktionieren kann.

Erhalten Sie datengestützte Erkenntnisse vom einem weltweit führenden Anbieter von Online-Umfragen.

Profitieren Sie von unverzichtbaren Features und hoch entwickelten Tools auf einer leistungsstarken Plattform.

Erstellen Sie passgenaue Formulare zur Erfassung von Daten und Zahlungen.

Erledigen Sie mehr dank über 100 Apps und Plugins.

Maßgeschneiderte Lösungen für Ihre gesamte Marktforschung

Mit der integrierten KI erstellen Sie bessere Umfragen und bekommen schnelle Erkenntnisse.

Vorlagen

Messen Sie Kundenzufriedenheit und Loyalität für Ihr Business.

Erfahren Sie, wie Sie Ihre Kund:innen begeistern und sie zu Fürsprechenden machen.

Erhalten Sie umsetzbare Erkenntnisse und verbessern Sie die Customer Experience.

Erfassen Sie Kontaktinformationen von Interessenten und Eingeladenen.

Erfassen Sie mühelos Zu- und Absagen für Ihr nächstes Event.

Finden Sie heraus, was die Teilnehmenden wollen, damit Sie Ihr nächstes Event optimieren können.

Verbessern Sie mit fundierten Erkenntnissen das Engagement und Ihre Ergebnisse.

Erhalten Sie Feedback von Ihren Teilnehmenden, um bessere Meetings zu gestalten.

Nutzen Sie Feedback von Kolleg:innen, um die Mitarbeiterleistung zu verbessern.

Erstellen Sie bessere Kurse und optimieren Sie die Lehrmethoden.

Erfahren Sie, wie Studierende das Lehrmaterial und die Präsentation bewerten.

Erfahren Sie, was Kund:innen von Ihren neuen Produktideen halten.

Ressourcen

Best Practices für Umfragen und Umfragedaten

Unser Blog, u. a. mit Tipps zu Umfragen und Business

FAQs und Tutorials für die Verwendung von SurveyMonkey

Wie Top-Marken mit SurveyMonkey das Wachstum steigern.

Vertrieb kontaktierenAnmelden
Vertrieb kontaktierenAnmelden

How to use correlational research to spot patterns and trends

Correlational research can show if there’s a relationship between two variables. Survey studies can confirm your research.

You may be more familiar with correlational research than you realize. For example, when the doorbell rings at a particular time of day, you know it’s the mailman dropping off a package. You came to the conclusion that there is a relationship between the doorbell and the mailman at a particular time of day after observing the doorbell and the mailman, two variables, over time. This is essentially correlational research.

Let’s look more closely at what correlational research is and how you can use it to spot patterns and trends.

As we alluded to in our mailman example, correlational research is a non-experimental research method in which two variables are observed in order to establish a statistically corresponding relationship between them. The goal of correlational research is to identify variables that have a relationship in which a change in one creates a change in the other—without influence from any extraneous variable.

Correlational research has, for example, identified a relationship between watching violent television and aggressive behaviors. But we must remember that correlational is not the same as causal. To prove that viewing violent shows on television causes aggression, experimental studies were needed. Correlational research established that there was a relationship, but experimental research was needed to prove the type of relationship.

Correlational research is one of several types of research design. So, what are the key characteristics of correlational research? 

  1. Non-experimental: in correlational research, there is no manipulation of variables with a set methodology to prove a hypothesis. It is a simple observation and measurement of the natural relationship between two variables without the interference of any other variables.
  2. Backward-looking: the future is not a consideration in correlational research. It observes and measures the historical relationship between two variables. The statistical pattern is backward-looking and can cease to exist in the future. The relationship between the variables may be revealed as positive in the past but can change to negative or zero in the future.
  3. Dynamic: the statistical patterns from correlational research are dynamic. The correlation can change on a daily basis, so it cannot be used as a standard variable for further research and analysis. Two variables could have a positive correlation in the past and a negative correlation relationship in the future.

There are several benefits to conducting a correlational research study:

Variable management 

There is no need to set up a controlled environment or staged interaction. In correlational research, you simply observe the two variables, their natural relationship, and their effects on each other. Observation takes place in the natural environment of the variables, and neither variable is manipulated.

Data collection

Correlational research generally involves two or more sets of data. By conducting correlational studies over time, you can observe patterns and trends that establish further relationship attributes. Data can either be collected by observation or archival data, which we will discuss in more detail later in this article.

Target market identification

Used in marketing, your correlational research may help you identify a new potential target market. For example, if you observe shoppers at a local grocery for an entire week, you might conclude that older shoppers tend to visit the store early in the morning. This relationship between time of day and customer age will help you target your advertising appropriately.

Ethical

Correlation research is conducted through observation only. In cases where experimental research is considered unethical, correlational research may be used to establish whether there is a relationship between two variables.

Economical

Correlational research takes less time and capital to conduct than experimental research. This is a particular advantage when working with limited funding.

As with any research method, there are limitations to correlational research:

Limited in scope

Correlational research is limited to providing statistical information from two variables only. It can uncover previously unknown relationships, but it cannot provide a conclusive reason for why the relationship exists.

No causal data

This research method only identifies a relationship between variables, it does not identify which of the variables creates the statistical pattern or which variable has the most influence. There is no evidence for cause and effect, so another research method must be used to determine the causal relationship.

Depends on historical data

Because correlational research depends on the past to determine the relationship between the variables, it cannot be a reliable source as a standard variable for future predictions.

Correlational and experimental research differ in four main ways: methodology, observation, causality, and number of variables.

Let’s take a deeper look at these differences:

Methodology

Methodology is the main difference between correlational and experimental research. In experimental research, the researcher introduces a catalyst or trigger to evaluate its effect on the variables in the study. In correlational research, the researcher simply observes the variables, watching for a statistical pattern that links them naturally. There is no interaction between the researcher and the variables, and no triggers or catalysts are introduced.

Observation

In correlational research, the researcher passively observes and measures the relationship between variables. In experimental research, the researcher actively triggers a change in the behavior of the variables and observes and records the resulting reactions and behaviors.